
J. Fluid Mech. (2003), vol. 492, pp. 147–180. c© 2003 Cambridge University Press

DOI: 10.1017/S0022112003005512 Printed in the United Kingdom

147
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The low-Reynolds-number wake dynamics and stability of the flow past toroids placed
normal to the flow direction are studied numerically. This bluff body has the attrac-
tive feature of behaving like the sphere at small aspect ratios, and locally like the
straight circular cylinder at large aspect ratios. Importantly, the geometry of the
ring is described by a single parameter, the aspect ratio (Ar), defined as a ratio of
the torus diameter to the cross-sectional diameter of the ring. A rich diversity of
wake topologies and flow transitions can therefore be investigated by varying the
aspect ratio. Studying this geometry allows our understanding to be developed as to
why the wake transitions leading to turbulence for the sphere and circular cylinder
differ so greatly. Strouhal–Reynolds-number profiles are determined for a range of
ring aspect ratios, as are critical Reynolds numbers for the onset of flow separation,
unsteady flow and asymmetry. Results are compared with experimental findings
from the literature. Calculated Strouhal–Reynolds-number profiles show that ring
wakes shed at frequencies progressively closer to that of the straight circular cylinder
wake as aspect ratio is increased from Ar =3. For Ar > 8, the initial asymmetric
transition is structurally analogous to the mode A transition for the circular cylinder,
with a discontinuity present in the Strouhal–Reynolds-number profile. The present
numerical study reveals a shedding-frequency decrease with decreasing aspect ratio for
ring wakes, and an increase in the critical Reynolds numbers for flow separation and
the unsteady flow transition. A Floquet stability analysis has revealed the existence
of three modes of asymmetric vortex shedding in the wake of larger rings. Two
of these modes are analogous to mode A and mode B of the circular cylinder wake,
and the third mode, mode C, is analogous to the intermediate wavelength mode found
in the wake of square section cylinders and circular cylinder wakes perturbed by a
tripwire. Furthermore, three distinct asymmetric transition modes have been identified
in the wake of small aspect ratio bluff rings. Fully developed asymmetric simulations
have verified the unsteady transition for rings that exhibit a steady asymmetric wake.

1. Introduction
Wake flows of two-dimensional bluff-body geometries, and the inherent transitions

with increasing Reynolds number from steady two-dimensional wake flow, through
unsteady and three-dimensional flows, to fully turbulent wakes have been of interest
to researchers for many decades. A recent comprehensive review of the work on
the circular cylinder wake has been provided by Williamson (1996). The wake
transitions for another widely studied bluff body, the sphere, are markedly different
(e.g. Johnson & Patel 1999; Ormières & Provansal 1999; Tomboulides & Orszag 2000;
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Thompson, Leweke & Provansal 2001a). There are also relevant related studies into
the wakes from other body geometries such as the square cross-sectioned cylinder (e.g.
Robichaux, Balachandar & Vanka 1999), and long rectangular plates (e.g. Hourigan,
Thompson & Tan 2001; Mills, Sheridan & Hourigan 2002, 2003). Although these
studies indicate some similarities in the bifurcations and wake dynamics from different
bodies, there are also significant differences that warrant further investigation. In this
paper, we are especially interested in the differences between the sphere and circular
cylinder wakes which show major differences in the wake bifurcations as a function
of Reynolds number. The characteristics of these geometries are now presented. The
characteristics of both the mode C instability for the square cylinder and the wakes
of bluff rings are also presented.

1.1. The sphere wake

A major difference in the wake transition behaviour of the sphere and circular cylinder
wakes is that the sphere wake becomes asymmetrical prior to a transition to unsteady
flow (Magarvey & Bishop 1961a , b), whereas the cylinder wake becomes unsteady
before asymmetric structures become present in the wake (Williamson 1988a , b).

For the sphere wake, the transition from attached to separated flow at the rear of
the sphere has been interpolated from direct numerical simulations to be ReS1 = 20
(Tomboulides, Orszag & Karniadakis 1993; Johnson & Patel 1999; Tomboulides &
Orszag 2000). On increasing the Reynolds number, the wake remains steady and
axisymmetric up to ReS2 = 211 (Johnson & Patel 1999). Magarvey & Bishop (1961b)
provided early flow visualizations of a liquid sphere falling through a liquid phase.
The experimental layout enabled striking images of the trailing wakes to be captured,
as they were motionless in the reference frame of the camera. The transition to
asymmetry is through a regular bifurcation (i.e. steady to steady flow) of the m = 1
azimuthal mode (Tomboulides et al. 1993; Tomboulides & Orszag 2000). Their studies
located the transition at ReS2 = 212. In good agreement, the numerical stability
analysis of Natarajan & Acrivos (1993) also found the m =1 azimuthal mode to
undergo a regular bifurcation at ReS2 = 210. Experiments and numerical simulations
(Johnson & Patel 1999) found the resulting wake to undergo a regular bifurcation
through a shift of the steady recirculating bubble behind the sphere from the axis.
Two threads of vorticity trail downstream from the recirculation bubble. This wake
structure has become known as the double-threaded wake, and has also been predicted
numerically by Tomboulides & Orszag (2000). The beautiful early dye visualizations of
Magarvey & Bishop (1961b) found that the double-threaded wake exists in the range
200<Re < 350. Since then, more accurate experiments and numerical simulations
have refined this range considerably, as described below.

The steady asymmetric wake undergoes a further transition to unsteady flow at
a higher Reynolds number. Through stability analysis, Natarajan & Acrivos (1993)
found a time-dependent instability of the m = 1 azimuthal mode at ReS3 = 277.5, and
the visualizations from numerical simulations (Tomboulides et al. 1993; Johnson &
Patel 1999; Tomboulides & Orszag 2000) support this bifurcation scenario, with
unsteady wakes being observed for Re > 280. In all instances, the unsteady wake
consisted of vortex loops or hairpins shedding downstream from the sphere, in the
same plane as that of the initial steady asymmetric structures. Magarvey & Bishop
(1961b) observed this periodic wake pattern at Re = 350. An analysis of the transition
to the periodic wake was also performed by Magarvey & MacLatchy (1965). They
observed the equilibrium in transport of vorticity into and out of the near field
of the double-threaded wake in the approximate range 200<Re < 300. For higher
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Reynolds numbers, the formation of the periodic hairpin-shedding wake was required
to transport the vorticity generated behind the sphere downstream. The periodic wake
of the sphere remains planar-symmetric up to a Reynolds number of approximately
Re =375, as observed numerically by (Mittal 1999a , b). Johnson & Patel (1999) esti-
mated the unsteady transition to occur in the range 270 < ReS3 < 280.

Stability of the sphere wake has been studied using the complex wave amplitude
Landau equation (Ghidersa & Dušek 2000; Thompson et al. 2001a). The coefficients
of the linear and cubic terms of the Landau model were estimated from asymmetric
numerical simulations close to the transition Reynolds numbers. The initial asym-
metric transition was found to be a regular type transition, occurring at ReS2 = 212,
and the subsequent transition was identified as being a Hopf transition at ReS3 = 272.
The critical Reynolds numbers of the transitions are in agreement with previous
studies. The analysis demonstrates that both transitions were shown to be supercritical
(non-hysteretic).

Tomboulides et al. (1993) observed fine-scale flow structures in large-eddy numerical
simulations in the Reynolds-number range 500 <Re < 1000. Magarvey & Bishop
(1961b) observed a breakdown in periodicity of the hairpin shedding for Re > 600
also. These results are considered to mark the onset of turbulence, and hence are
beyond the scope of the present study.

1.2. The circular cylinder wake

The initial transition for the cylinder wake occurs with the separation of flow from
the rear of the cylinder, resulting in a steady recirculation bubble. This transition was
predicted by numerical stability analysis to occur at ReC1 = 5 (Noack & Eckelmann
1994b). The recirculation zone remains steady two-dimensional and symmetrical about
the centreline of the flow until a subsequent transition to periodic flow occurs. This
transition was predicted to occur at ReC2 = 54 (Noack & Eckelmann 1994a); however,
the Galerkin method used appeared to have too few modes to capture the instability
accurately. The experimentally derived results of Williamson (1988a , 1989) at Re =49
are widely regarded as more accurate. Sheard, Thompson & Hourigan (2001) validated
this finding through application of a spectral-element method, achieving ReC2 = 47,
in good agreement with Dušek, Fraunié & Le Gal (1994), who obtainined a value
of ReC2 = 47.1 through numerical simulation and the application of the theoretical
Landau model. Dušek et al. (1994) identified the transition as a Hopf bifurcation.

Two three-dimensional wake states are observed in the wake behind the circular
cylinder: oblique shedding and instabilities of the parallel vortex street. At Reynolds
numbers Re > 64, oblique shedding is observed (Williamson 1988a , 1996), where
the vortex rollers are shed at an angle to the cylinder resulting in a reduction of
Strouhal number. Oblique shedding is a phenomenon associated with the interaction
of nonlinear long-wavelength azimuthal modes disrupting the parallel vortex street,
and as such is beyond the scope of the present work.

Experiments have found the parallel periodic vortex shedding street becomes
unstable to three-dimensional instabilities at Re > 178 (Williamson 1988a , 1996).
This transition was studied using a linear Floquet stability analysis (Barkley &
Henderson 1996). They found that at Re = 188.5, the cylinder wake becomes unstable
to three-dimensional perturbations with a spanwise wavelength of 3.96 diameters (d ).
A second instability on the two-dimensional base flow was found at Re = 259, with
a spanwise wavelength of 0.822d . These instabilities and their respective spanwise
wavelengths agree closely with experimental observations of the mode A and mode B
wake structures observed experimentally by Williamson (1988b). Three-dimensional
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simulations by Thompson, Hourigan & Sheridan (1994, 1996) captured detailed im-
ages of the saturated three-dimensional streamwise vortical structures corresponding
to these two different bifurcations.

Henderson (1997) performed three-dimensional simulations on the wake of the cir-
cular cylinder through the mode A and mode B transitions. The span of the simula-
tions was varied up to 4 times the spanwise wavelength of the mode A instability. The
interaction between the mode A and mode B instabilities was studied by monitoring
the energy present in the various spanwise Fourier modes of the simulations. Wake
visualizations were captured at Re = 265 showing the coexistence of both mode A
and mode B wake structures. This spontaneous switching between one mode and
the other may explain the presence of two distinct Strouhal frequencies in the wake
in the Reynolds-number range 230 < Re < 260 as observed by Williamson (1988b).
An attempt was made to study the physical mechanism leading to the formation
of streamwise vortical wake structures (Mittal & Balachandar 1995); however, the
computational domain only spanned a single cylinder diameter, resulting in the
artificial suppression of mode A structures. They did, however, observe the formation
of well-defined vortical structures in the braid region of the vortex street, associated
with mode B shedding. A detailed Floquet analysis was performed (Thompson,
Leweke & Williamson 2001b) in an attempt to identify the physical mechanism of
the mode A transition showing, although complex, it is consistent with an elliptic
instability of the vortex cores. Evidence suggests that the transition is in fact a
cooperative elliptic instability (Leweke & Williamson 1998), with the elliptic instability
dominant in initiating the growth of the three-dimensional flow structures in the near
wake. Advection then transports some perturbation into the braid regions as the wake
convects downstream.

A geometric analogy exists between the two-dimensional circular cylinder placed
close to a wall, and the circular cross-section bluff ring at small aspect ratios, where the
ring cross-section lies in the vicinity of the axis. Essentially, both the axis of the ring
and the boundary near the cylinder constrain and deform the resulting wake. A free
surface with a Froude number (Fr = 0) dominated by gravity is essentially a boundary
with zero tangential stresses. Hourigan, Reichl & Thompson (2002) modelled such
a case with numerical simulations at a Reynolds number Re = 180. They showed
that as the cylinder approached the free surface, the Strouhal number for the vortex
shedding street increased by 10% from the reference cylinder with no boundaries in
its vicinity. This maximum shedding frequency occurred where the gap between the
cylinder and the wall was 0.7 times the diameter of the cylinder (0.7d). A further
reduction in this gap saw a rapid drop in frequency, until for gap ratios less than 0.1d

no vortex shedding was observed. The numerical bluff ring study by Sheard et al.
(2001) presents Strouhal-number profiles showing a similar reduction in Strouhal
number with decreasing aspect ratio (i.e. a decreasing gap between the axis and
the circular ring cross-section) to the work of Hourigan et al. (2002). Despite this,
no Strouhal-number rise with decreasing aspect ratio can be found for bluff rings,
although a small rise in Strouhal number as the gap ratio approached 0.7d was
observed for the cylinder near a free surface.

1.3. Square cylinder wake

When studying the three-dimensional stability of the square cylinder, Robichaux et al.
(1999) found an intermediate wavelength mode (2.8d) that they designated mode S.
This mode was periodic over two shedding cycles of the base flow (2T symmetry). This
symmetry is in contrast to modes A and B, which are periodic over a single period of
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Sphere transition type Reynolds number

Boundary-layer separation 20
Regular asymmetric transition – regular bifurcation 210 to 212
Hopf transition – Hopf bifurcation 270 to 280

Table 1. Transition Reynolds numbers for the wake around a sphere (Johnson & Patel 1999;
Tomboulides & Orszag 2000).

Circular cylinder transition type Reynolds number

Boundary-layer separation 4 to 5
Hopf transition – Hopf bifurcation 47
Three-dimensional transition – Hopf bifurcation 188.5

Table 2. Transition Reynolds numbers for the wake around a circular cylinder (Noak &
Eckelmann 1994b; Williamson 1988a; Barkley & Henderson 1996).

the base flow (1T symmetry). Their study also found analogous mode A and mode B
instabilities in the wake; however, the spanwise wavelengths of both modes were about
40% larger than those for a circular cylinder. This is consistent with the diagonal
length being the dimension controlling the scaling of the spanwise wavelengths of
the instability modes for this particular geometry. The mode S topology and periodi-
city is identical to the mode C instability observed for the circular cylinder wake
(Zhang et al. 1995) when a tripwire is placed close to the body. The wavelength of
the mode C instability was predicted to be 2d . The circular cylinder wake has not
been found to exhibit this mode C type instability without artificial forcing.

A summary of the sphere and cylinder transitions is presented in tables 1 and 2,
respectively.

1.4. Wake of a toroidal body

A bluff-body geometry that spans the extremes of wake behaviour shown by the
sphere and circular cylinder as a single geometric parameter is varied, is the torus
(or ring) with its axis placed parallel to the flow. This particular geometry has been
studied previously by Leweke & Provansal (1995), with the main motivation to remove
the end effects that experimentally hinder circular cylinder wake studies.

The parameters specifying the bluff ring geometry are defined as in Leweke &
Provansal (1995), consistent with earlier work by the current authors. We define the
aspect ratio as Ar = D/d , where D is the major diameter of the circular centreline of
the ring cross-section, and d is the minor diameter of the cross-section of the ring.
The geometry is represented schematically in figure 1. By varying the single geometric
parameter Ar , a uniform axisymmetric body is described varying from a sphere at
Ar = 0, to a straight cylinder in the limit Ar → ∞. The hole in the centre of the ring
first appears at the axis at Ar = 1.

The Reynolds number is based on the uniform free-stream velocity, U , the length
dimension d , and the kinematic viscosity, ν, consistent with the previous definitions
for both the sphere and cylinder.

The flow around a bluff ring has been afforded limited attention in the literature.
Roshko (1953) showed experimentally that laminar vortex shedding from rings occur-
red at frequencies lower than for the circular cylinder by up to a few per cent. This
behaviour was quantified experimentally by Leweke & Provansal (1995). They defined
a Strouhal–Reynolds-curvature relationship for laminar shedding for a ring diameter
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Figure 1. Schematic diagram of the bluff ring system.

at least 10 times greater than its cross-sectional diameter. Their study also investigated
the transition regimes for Re < 400, modelling the straight circular cylinder wake
without end effects as a torus. Roshko (1953) noted that at smaller aspect ratios,
the ring wake exhibited a vastly different Strouhal–Reynolds number variation. The
numerical investigation by Sheard et al. (2001) complemented these experimentally
derived Strouhal profiles for the range of aspect ratios 5 � Ar � 40.

The analogy between the wakes of spheres and disks and those of rings with aspect
ratios Ar <5 was investigated at Reynolds numbers Re=104 by Bearman & Takamoto
(1988). Their findings supported the observations of Roshko (1953) pertaining to
the low-aspect-ratio (Ar < 5) behaviour. The Reynolds numbers they studied were
far larger than in the present study; here, only the range Re < 400 is considered,
consistent with the range over which transitions to unsteady asymmetric flow are
expected.

Asymmetric wakes were observed by both Monson (1983) and Leweke & Provansal
(1995), in the form of helical vortex rings analogous to the oblique shedding observed
by Williamson (1989) for circular cylinders. Whereas the oblique wake of a circular
cylinder can be observed at arbitrary angles to the cylinder axis depending on the
experimental end conditions and cylinder length, the helical vortex rings were observed
to shed as discrete modes consisting of single, double or triple helices. This is due
to the imposed periodicity of the bluff ring geometry. The experiments of Monson
(1983) involved observing a ring falling through a liquid, rendering Strouhal-number
measurements difficult. However, the study by Leweke & Provansal (1995) involved
passing fluid over a fixed ring, which allowed accurate measurements of the Strouhal
number. The appearance of the three helical modes was studied for different aspect
ratios, and it was found that the double and triple helices could only be observed for
larger rings of aspect ratio approximately Ar > 18. The stability of the helical modes
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was also studied. Higher-order helical modes were less stable, being observed only at
higher Reynolds numbers than for parallel shedding. Furthermore, it was observed
that a decrease in aspect ratio led to a corresponding increase in the relative critical
Reynolds numbers for the respective helical modes.

The Strouhal–Reynolds number profiles of Leweke & Provansal (1995) over the
asymmetric transition range for the bluff rings compare in an interesting way to the
corresponding profiles reported by Williamson (1988a , 1996) for the circular cylinder.
The former observed a discontinuity, marked by a drop in Strouhal frequency of
about 5%, in the vicinity of the mode A transition for the cylinder, consistent with
the corresponding drop in the cylinder profile. At the mode B transition, however,
Strouhal-number profiles for the ring exhibit a difference in the behaviour. For the
circular cylinder, there is evidence of two distinct frequencies in an overlap region
before the wake becomes dominated by the mode B instability at Re � 260. In
contrast, the wake of the bluff ring appears to undergo a continuous transition as
the Reynolds number increases. At higher Reynolds numbers (Re > 300), there is a
return to consistency between the cylinder and ring profiles for the range of aspect
ratios studied.

At present, no understanding of the transition regimes that exist over the aspect
ratio parameter space for the bluff ring is known. The axisymmetric computations
and associated linear stability analysis of the present study enables both axisymmetric
and primary asymmetric instabilities of the bluff ring wakes to be predicted, and a
corresponding stability parameter space for all bluff rings to be mapped.

1.5. Structure of paper

The remainder of the paper consists of the following sections: numerical formulation,
axisymmetric flow characteristics, axisymmetric wake stability, linear asymmetric wake
stability, asymmetric flow visualization, and discussion and conclusions. The numerical
formulation section outlines the numerical methods used for both the axisymmetric
and asymmetric flow simulations, and the linear stability analysis of the axisym-
metric flow to asymmetric perturbations. The following section on axisymmetric flow
characteristics summarizes and expands on the Strouhal-number profiles of the system.
Flow visualizations are provided and compared to the wakes of the reference wake
flows of the sphere and cylinder. The section covering axisymmetric wake stability
provides profiles of the transition from attached to separated flow, as well as the
transition to unsteady flow for the axisymmetric wakes. Mathematical fits describing
these transitions are provided, as well as for the Strouhal number as a function of
both the Reynolds number and aspect ratio. Results of linear stability analysis are
then presented. As well as highlighting the dominant shedding modes and visualizing
the acquired perturbation fields of both steady and unsteady wake flows, the change
in the dominant azimuthal instability mode with aspect ratio will also be considered.
The final results section presents the predicted behaviour of the critical Reynolds
number for the transition to unsteady flow from the steady asymmetric wakes of
rings with Ar < 4.

2. Numerical formulation
2.1. The spectral-element method

A spectral-element method was used for the numerical simulations in this investi-
gation. This method is described in detail in Patera (1984), Karniadakis (1990),
and Thompson et al. (1994, 1996), so only a brief outline is provided here. The
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spectral-element method is based on the Galerkin finite-element method, incorporating
high-order Lagrangian polynomial shape functions within each element. The node
points of the Lagrangian polynomials correspond to the Gauss–Legendre–Lobatto
quadrature points, allowing accurate and efficient integration over each element. For
non-axisymmetric calculations, axisymmetric grids were expanded in the azimuthal
direction using a Fourier expansion, allowing asymmetric evolution of the flow
fields.

The axisymmetric and asymmetric formulation of the code has been applied success-
fully to both the sphere (Thompson et al. 2001a), and the circular cylinder (Thompson
et al. 1994, 1996), so further validation is not presented here.

The axisymmetric simulations are sufficient to determine both the critical Reynolds
numbers for transitions to separated wake flow, and the subsequent axisymmetric
transition to unsteady flow. To determine the wake stability of the axisymmetric base
flow to asymmetric perturbations, application of Floquet stability analysis is under-
taken.

2.2. Linear Floquet stability analysis

Floquet stability analysis can be used to determine the stability of a periodic axisym-
metric base flow to asymmetric perturbations. Barkley & Henderson (1996) applied
this technique successfully to study the asymmetric transitions of the straight circular
cylinder. Natarajan & Acrivos (1993) performed a similar study for the stability of
the sphere wake. Both the sphere wake stability results, as well as the straight circular
cylinder results are replicated in this paper to validate the current formulation and
implementation of the stability analysis technique. The present numerical technique
has been successfully applied to the wake of a circular cylinder (Thompson et al.
2001b). The asymmetric Floquet modes are determined from the linearized Navier–
Stokes equations assuming sinusoidal variation in the azimuthal direction with mode
number, m. This corresponds to a spanwise wavelength of λ= 2π/m for the bluff
ring geometry. In the cylindrical polar coordinate formulation of this technique, the
wavelength is expressed in radians. Only integer mode numbers are considered, as the
azimuthal wavelength must be a whole factor of 2π radians because of periodicity
imposed by the geometry. The implementation of the method in this case is similar
to the implementation of Barkley & Henderson (1996). Effectively, the perturbation
field satisfying the linearized Navier–Stokes equations is evolved at each time step in
parallel to the base flow. The L2 norm of the perturbation field is normalized to unity
at the beginning of each period, and the global growth or decay of the perturbation
field is measured at the end of each period. This gives the amplitude growth factor
which converges after many periods to the dominant Floquet multiplier (µ) of the
system for a given Reynolds number and spanwise wavelength λ (or equivalent m).
Floquet multipliers µ > 1 indicate an exponentially growing perturbation and hence
an unstable base flow. Conversely, if the multipliers for all possible wavelengths are
less than unity, the base flow is stable. A Floquet multiplier of µ = 1 represents neutral
stability, where an imposed low-amplitude perturbation neither grows nor decays. The
aim is to determine the critical Reynolds numbers and wavelengths at which neutral
stability is reached.

2.3. Validation of spectral-element method and stability analysis technique

The implementation of the spectral-element method used here is the same as that
employed by Thompson et al. (1994, 1996), and Sheard et al. (2001, 2002), hence only
validation of the meshes used is necessary.
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A thorough grid-resolution study determined an acceptable compromise between
computational efficiency and allowable accuracy in this investigation. After con-
siderable testing, meshes consisting of approximately 400 elements were found to
resolve the flow field within an accuracy of better than 1%. Blockage and outflow
boundary effects were minimized by employing domain sizes for the inlet, outer
transverse domain and outlet of 15, 30 and 25 units, respectively. These domain
sizes maintained an accuracy for global wake parameters of better than 1%, 0.1%
and 0.1%, respectively. Elements with 64 nodes (8 × 8) were used predominantly;
however, in order to retain an accuracy of better than 1% for Re > 300, elements
with 81 (9 × 9) nodes were used.

For small aspect ratios, and especially those in the vicinity of Ar = 1, where the
ring exhibits singular points on the axis upstream and downstream, careful attention
was paid to the meshing of these cases to limit the skewness of mesh elements, and
to include sufficient spatial resolution in the vicinity of the ring to model the flow, as
discussed in the next paragraph. To ensure the consistency between the axisymmetric
and asymmetric formulations of the numerical scheme, a computation was performed
using both methods for an Ar = 1.2 ring at Re = 300, with asymmetric flow suppressed.
Both methods provided global quantities such as the drag coefficient to within 0.5%,
and a measure highly sensitive to numerical accuracy, the velocity components at a
point in the wake were within 0.9%.

An approximate boundary-layer thickness (δ) is analytically calculated at several
points around the bluff ring cross-section for flow at a Reynolds number Re = 300.
At distances from the front to the rear of a quarter, a half, and the full distance,
the thickness was estimated as 0.18d , 0.26d and 0.36d . The macro-element closest
to the ring cross-section for all meshes employed in this study is 0.0872d thick, and
the second element extends to 0.2383d . Thus, even with a polynomial order of only
N 2 = 64, between 11 and 19 nodes resolve the boundary layer around the ring cross-
section.

As mentioned above, the Floquet stability analysis technique was validated by
comparing results obtained for both the straight circular cylinder wake and the
sphere wake, with accepted values from experiment and numerical work.

A numerical stability analysis of the sphere wake has been performed by Natarajan
& Acrivos (1993). They determined that the sphere wake becomes asymmetric at a
Reynolds number Re = 210, undergoing a regular bifurcation and adopting a non-
axisymmetric wake with a mode number m =1.

For the current validation exercise, Floquet analysis conducted on the steady
axisymmetric flow around a sphere was carried out over several Reynolds numbers to
determine the neutral stability for the m =1 mode of the wake. Quadratic interpolation
over Reynolds number indicated that this transition occurred at Re = 211.5. Note that
this value is in good agreement with the numerical stability analysis of Natarajan &
Acrivos (1993), the numerical simulations of Tomboulides & Orszag (2000), and the
experimental studies by Johnson & Patel (1999).

A similar study was performed for the flow past a straight circular cylinder. Barkley
& Henderson (1996) predicted the critical Reynolds number for mode A shedding to
be Re = 188.5 ± 1.0 at a wavelength of λ= 3.96 ± 0.02. For the present study, Floquet
multipliers were obtained at 7 discrete wavelengths over the range 3.9 � λ� 4.02 and
at 3 distinct Reynolds numbers in the range 185 � Re � 190. The critical transition
was estimated using cubic interpolation over the spanwise wavelength and quadratic
interpolation over the Reynolds number. The critical Reynolds number for the onset
of mode A shedding was found to be Re = 188.3 with a spanwise wavelength of
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Figure 2. Computed Strouhal–Reynolds-number profiles for the axisymmetric flow around
bluff rings. The solid black line highlights the circular cylinder Strouhal number profile for
reference. Although axisymmetric profiles of the Ar = 3 and Ar = 3.5 rings are presented, it will
be shown later that the wakes of these rings would in fact be asymmetric for these Reynolds
numbers.

λ=3.96. These values are within the error bounds of the previous studies, validating
both the resolution and domain size of the meshes used, and also the stability analysis
code. Furthermore, they indicate that both dominant modes and the corresponding
critical Reynolds numbers will be found with an accuracy of better than 1%.

3. Results: axisymmetric flow characteristics
Strouhal–Reynolds-number profiles have been computed for the periodic flow

around bluff rings from axisymmetric simulations. These numerical predictions are
compared with the experimental results of Leweke & Provansal (1995). Strouhal–
Reynolds-number profiles are computed for a circular cylinder, and bluff ring models
of aspect ratios Ar = 3, 5, 10, 20 and 40. The significant variation between the
Strouhal-number curves for the Ar = 3 and Ar = 5 rings prompted further simulations
at intermediate aspect ratios Ar =3.5 and Ar = 4. The profiles for these rings are also
included in figure 2, which shows the Strouhal profiles obtained for the current set of
bluff ring aspect ratios.

Figure 2 shows a distinct trend towards the Strouhal number profile for the straight
circular cylinder with increasing aspect ratio for the bluff ring Strouhal number
profiles. An increase in the critical Reynolds number for the onset of periodic flow is
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also observed as aspect ratio decreases. Rings with Ar > 10 exhibit periodic shedding
within 5% of the corresponding circular cylinder transition, whereas rings with
smaller aspect ratios (Ar < 10) undergo the transition at successively higher Reynolds
numbers as the aspect ratio decreases. Furthermore, the Strouhal number at the onset
of vortex shedding shows an increasing trend as the aspect ratio is decreased towards
Ar → 3.5. The initial Strouhal number for the Ar = 3 ring is slightly lower than the
Ar = 3.5 ring.

The following sections discuss the determination of the critical Reynolds numbers
for the transition to separated flow, and the transition to unsteady flow. In addition,
some of the features of the flow fields observed in the investigation are elucidated,
and a universal empirical fit for the Strouhal number as a function of both Reynolds
number and aspect ratio is proposed.

3.1. Transition to separated flow

To determine the initial wake transition from attached to separated wakes, flow
separation was determined by monitoring the stagnation points around the cross-
section of the ring. A single upstream stagnation together with a single downstream
stagnation indicates fully attached boundary layers around the inner and outer
ring surface. More than two stagnation points on the torus cross-section indicate that
flow separation has occurred, and reversed flow is present in the wake. An alternative
to this approach for quantifying this transition is to measure the recirculation bubble
length at Reynolds numbers beyond the transition, and extrapolating the length
to zero against Reynolds number (see Tomboulides & Orszag 2000). However, for
the torus, the position and orientation of the recirculation zones varied with aspect
ratio and Reynolds number, hence the bubble lengths are more difficult to measure
consistently. Results for the straight cylinder and the sphere were obtained along
with those of the bluff rings to verify consistency with values in the literature. For
both the sphere and the circular cylinder, the present results agreed with previous
findings to the limit of experimental and numerical error (Re ± 0.5). A graph of the
transition Reynolds number, ReT 1, for flow separation against aspect ratio is provided
in figure 3.

Two distinct types of separation can be inferred from figure 3. The first type occurs
to the left of the asymptote (dotted line) for Ar � 1, and the other for aspect ratios
Ar > 1. The discontinuous behaviour of the separation transition is understandable
when we consider the discontinuous topological change at Ar = 1.

Recall that aspect ratios Ar > 1 represent a ring with a hole present at the axis,
whereas those geometries with Ar � 1 have no hole present. Hence in the Ar � 1
region, the transition leads to a recirculation bubble in the wake behind the ring on
the axis. An increase in aspect ratio from the sphere at Ar =0 in turn increases the
maximum angle at which fluid has to remain attached around the leeward side of the
ring geometry to greater than 90◦ to the direction of the flow. As Ar → 1, the fluid
would have to deflect so far around the rear of the ring and towards the axis that
to remain attached, the fluid would need to travel in the upstream direction parallel
to the axis. This explains the decrease of the transition from the sphere transition at
Re =21 towards zero over the range 0 � Ar � 1. At aspect ratios Ar > 1, fluid passes
through the hole, changing the character of the separation bubble.

Figure 4 shows streamlines at an aspect ratio Ar < 1, after the transition to separated
flow. Note the recirculation bubble behind the ring cross-section centred on the axis.

The flow separation profile for Ar > 1 involves the development of a local flow
separation bubble behind the circular ring cross-section. Hence, instead of the axial



158 G. J. Sheard, M. C. Thompson and K. Hourigan

Aspect ratio, Ar

T
ra

ns
it

io
n 

R
ey

no
ld

s 
nu

m
be

r

0 2 4 6 8 10

10

20

30

40

50

60

70

80

90

100

Predicted regular
asymmetric transition

Figure 3. Reynolds numbers for the flow separation transition (ReT 1) versus aspect ratio for
bluff rings. The dashed line indicates the emergence of the hole in the centre of the torus at
Ar = 1. The predicted asymmetric transition profile is marked by a dotted line, marking the
limit of validity for the axisymmetric computations (see figure 15).

Figure 4. Flow streamlines around a ring of aspect ratio Ar = 0.6 at Re =10, following the
separation transition, illustrating the recirculating region behind the ring on the axis. Unevenly
spaced streamline contour levels are used to elucidate relevant flow structures.

recirculation bubble found for Ar � 1, a distinct recirculating ring of fluid is formed
behind the downstream surface of the torus. For aspect ratios in the range 1< Ar � 3,
the transition occurred at much higher Reynolds numbers than for the sphere and
cylinder transitions. This will be explored in the following section. For larger aspect
ratios (Ar > 3), the transition is found at Reynolds numbers similar to that of the
corresponding circular cylinder transition. Figures 4 and 5 highlight the difference
between the transition for rings of Ar � 1 and Ar > 1. In figure 5, the flow past a ring
with aspect ratio Ar =3 is shown at Re = 100, following the transition. The recircu-
lation zone is clearly visible downstream of the circular ring cross-section, and the
flow field is steady.
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Figure 5. Flow streamlines around a ring with aspect ratio Ar = 3 at Re = 100, following
the separation transition, illustrating the recirculating region behind the ring cross-section.
Arbitrary contour levels are used to highlight the flow structures.

(a)

(b)

Figure 6. Flow streamlines around a ring with aspect ratio Ar = 1.4. Part (a) shows a
computation at Re = 25, showing the axial recirculation bubble located downstream of the
ring. Part (b) shows a computation at Re = 100, with a larger axial recirculation bubble located
downstream of the ring. Note also the divergence of streamlines in the lower right-hand surface
of the ring cross-section, corresponding to the impending flow separation transition. Again,
the contour levels of the streamline plots are arbitrary.

3.2. Detached recirculation bubble on axis

Observation of the velocity fields at aspect ratios 1<Ar � 2 show an interesting
physical phenomenon mentioned in the preceding section. Rings with no hole (Ar � 1)
exhibit a single axial recirculation region downstream, similar to the case of the sphere.
However, at an aspect ratio larger than Ar = 1, the presence of the hole in the ring
on the axis results in a detached recirculation bubble on the axis downstream of the
body, as shown in figure 6(a). This bubble increases in size with Reynolds number,
but is not observed for larger aspect ratios (approximately Ar > 2). The bubble exists
owing to the stagnation of fluid on the axis downstream of the ring resulting from an
adverse pressure gradient induced by the divergence of fluid radially outward around
the leeward surface of the bluff ring. This effect is negated at higher aspect ratios, as
the geometric radial divergence is not as significant near to the axis. Note the absence
of any such axial recirculation in figure 5. Figure 6(a) shows such a recirculation
bubble downstream of the ring cross-section for a ring with Ar =1.4 at Re = 25. The
upstream streamlines indicate that all but a column of fluid approximately 0.1d in
diameter is deflected around the outside of the ring.
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The ring cross-section in figure 6(a) shows an upstream stagnation in the lower
left-hand quadrant of the cross-section of the ring, and a corresponding downstream
stagnation is located on the upper right surface of the cross-section. Observe that
no evidence of boundary-layer separation can be seen on the ring cross-section
surfaces normal to the upstream and downstream stagnation points, that correspond
to a leading and trailing stagnation ring in axisymmetric space. At the downstream
stagnation, an artefact of the streamline integration is observed as a minute closed
streamline.

A higher-Reynolds-number streamline plot for the same aspect ratio is shown in
figure 6(b) where the first stages of boundary-layer separation at the inner downstream
(bottom right) region of the ring cross-section are shown. This is the point where the
streamlines deflect from the body before returning to a more coincident path around
the trailing surface.

The increasing transition Reynolds number for flow separation as the aspect ratio
decreases towards Ar = 1 may be explained by considering the streamline plots in
figure 6. The restriction imposed by the small aspect ratio on the wake flow is clear
when we consider both the small proportion of fluid passing through the middle
of the ring in figure 6, and the high angle between the line through upstream and
downstream stagnations and the horizontal. Observe that the fluid passing through
the axial hole of the ring actually diverges as it approaches the body. This causes
a local deceleration of the flow, which in turn lowers the local Reynolds number.
Increasing the global Reynolds number of the system (compare figure 6b to figure 6a)
allows a greater proportion of fluid to pass through the centre of the ring, hence
forming a stagnation and separation on the inner-downstream surface of the ring
owing to the adverse body curvature in the vicinity. Thus, owing to viscous effects,
smaller aspect ratios require a higher Reynolds number for sufficient fluid to pass
through the centre of the ring to form a stagnation point and flow separation.

3.3. The onset of unsteadiness in the bluff ring wakes

The critical Reynolds numbers for the transition from steady to periodic flow was
found by measuring the decay rate of unsteady velocity transients in the wake at a
series of Reynolds numbers just prior to the onset of unsteady flow. Extrapolation of
these decay rates to zero provides the Reynolds number corresponding to the neutral
stability limit of unsteady transients in the steady axisymmetric wake. The Reynolds
number at which this neutral stability is reached is the Hopf transition Reynolds
number for unsteady flow, ReT 2. An example of the linear fit shown in figure 7, for
the Ar =5 ring.

A similar analysis was performed for a range of aspect ratios that exhibited periodic
flow, specifically Ar = 2, 3, 3.5, 4, 5, 10, 20, 40, and the straight circular cylinder. Later
in this paper results of a linear stability analysis are presented that predict that a
regular asymmetric wake transition will precede the axisymmetric Hopf bifurcation of
the steady wake for aspect ratios Ar � 4. We present the results of the axisymmetric
study here in its entirety for completeness, however, regions of the axisymmetric pa-
rameter space that are predicted to be non-physical because of a prior asymmetric
transition are represented by dotted lines.

Figure 8 provides the variation of Reynolds number, ReT 2, for the transition from
steady to periodic flow obtained from the axisymmetric studies. Unsteady flow was
not observed for aspect ratios Ar < 1; a result that was expected based on the
observed behaviour of sphere and disk wakes that become unsteady only after a
prior transition to an asymmetric wake. Obtaining the transition Reynolds numbers
for Ar < 2 requires either fully asymmetric simulations, or the application of stability
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Figure 7. Unsteady transient decay rates for the Ar = 5 ring. Computed decay rates are shown
as squares, and the solid line represents a linear fit to the data. The dashed line represents the
neutral stability limit where the decay rate k = 0.

analysis, and will therefore be completed in later sections. Note that at the large
aspect ratio limit, the unsteady transition asymptotes to that of the straight cylinder.
This result is expected based on the studies of Leweke & Provansal (1995).

The dramatic increase in ReT 2 as the aspect ratio decreases towards Ar = 1 is
observed because the axisymmetric Hopf transition is an instability of the recirculating
bubble behind the cross-section of the ring. Recall that the recirculating ring of fluid
is formed following the separation transition ReT 1, which also increases rapidly as
the aspect ratio approaches Ar = 1. These high transition Reynolds numbers allow
asymmetry to develop in the wake of the bluff rings with small aspect ratios (Ar < 4
in fact) prior to the Hopf transition to unsteady flow. The sharp rise in ReT 2 for the
transition as the aspect ratio decreases towards Ar = 1 means that as the distance
between the axis and the ring cross-section is decreased, a higher Reynolds number is
required to sustain an unsteady wake. The work by Hourigan, Reichl & Thompson
(2002) has been mentioned previously for the circular cylinder near a free surface.
They saw a cessation of vortex shedding at Re =180 for gap ratios less than 0.1d .
A ring with aspect ratio Ar = 1.2 has a similar gap ratio between the axis and ring
cross-section; however, no vortex shedding is observed for aspect ratios Ar < 2.7 at
Re =180. It is probable that the higher solidity of the ring about the axis provides a
greater constraint on the flow than the analogous circular cylinder near to a slip-wall.
Therefore, greater Reynolds numbers are required to induce vortex shedding, although
the mechanism inhibiting the unsteady wake is the same. A universal relationship
for the Strouhal number as a function of both the aspect ratio, and the Reynolds
number, is now developed.
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Figure 8. Reynolds numbers for the Hopf transition versus aspect ratio for bluff rings
obtained from axisymmetric simulations. The dashed line indicates Ar = 1, where the hole first
appears in the ring at the axis, and the dotted line marks the predicted asymmetric transition
that defines the limit of validity of the presented axisymmetric Hopf transition results.

3.4. Defining a Strouhal–Reynolds-number/aspect ratio relationship

Leweke & Provansal (1995) proposed a relationship linking the Strouhal number to
the Reynolds number and ring curvature (K) of a particular bluff ring. That extended
the earlier work of Williamson (1988a) for the straight circular cylinder to non-zero
curvatures. Williamson (1988a) noticed that the product of the Strouhal and Reynolds
number in the axisymmetric regime is approximated closely by a quadratic function:

Re St = ARe2 + B Re + C. (3.1)

Ring curvature is related to aspect ratio by the relationship K =2/Ar . The Strouhal-
number relationship suggested by Leweke & Provansal (1995) extended Williamson’s
relationship to cover cylinders with non-zero curvature, as follows:

S(Re, K, θ) = S0(Re, K = 0) − a[Re − Rec(K = 0)]K cos(θ). (3.2)

Here, θ specifies the angle of the vortex street being shed with respect to the body
axis. As these simulations are axisymmetric, no oblique shedding modes can be
predicted, so the angle becomes θ =0. From experiment, they obtained the factor
a =0.0002134. Correcting the results in figure 2 for zero curvature K = 0, all the
points should lie along the straight circular cylinder Strouhal-number profile included
in the chart, if the relationship is in agreement with the current results. Figure 9
shows the result of this correction.
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Figure 9. Strouhal–Reynolds-number profiles of the current data extrapolated to zero
curvature using the curvature correction formula developed by Leweke & Provansal (1995).
Recall that the flow for the Ar =3 and Ar =3.5 rings would in fact be asymmetric.

It is observed that the curves for smaller aspect ratios fail to collapse onto a single
profile. This is due to a linear approximation in the relationship that loses validity
for larger curvatures. As mentioned earlier, the study of Leweke & Provansal (1995)
considered aspect ratios Ar > 10, as they were attempting to approximate wakes from
a straight circular cylinder. The rescaled Strouhal-number profiles for rings of aspect
ratio Ar < 10 in the present study fall successively under the ideal straight cylinder
profile owing to an apparent nonlinear curvature dependence.

The previous relationship is of the form S = S0 − g(Re)K . Here, the function g(Re)
is a linear function of Re independent of K , and it represents |�S0/�K |. �S0 is the
difference between the bluff ring Strouhal number, and the corresponding straight
cylinder Strouhal number at the same Reynolds number.

We propose a new functional dependence, based on the observation that the
Strouhal–Reynolds-number profiles all exhibit a similar profile when translated to the
same starting point, and scaled by a factor that varies with aspect ratio.

A{S(Re, Ar) − Sc} =
{
S0(Re − Rec + Re0c) − S0c

}
. (3.3)

In this relationship, S(Re, Ar) is the Strouhal number for the given Re and Ar , Sc is
the critical Strouhal frequency for a given Ar , S0(Re) is the straight circular cylinder
Strouhal number for a given Re, Rec is the critical Reynolds number for a ring of
given Ar , Re0c is the critical Reynolds number of the straight circular cylinder, S0c is
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Figure 10. Bluff ring Strouhal–Reynolds-number profiles corrected to zero curvature using
the proposed relationship. Symbols are as in figures 2 and 9.

the Strouhal frequency at the critical Reynolds number for the straight cylinder and
A is the factor by which the Strouhal frequencies differ.

Introducing the ring curvature K = 2/Ar , the following relationships describe the
above variables. These relationship forms were chosen to minimize error in deter-
mining the coefficients to less than 1%, as any discrepancy in these coefficients is
amplified in the final result.

Sc = −1.1479K5 + 0.59433K4 + 0.34015K3 − 0.12845K2 + 0.0188K + 0.124,

S0 = 4.524 × 10−5Re + 0.21335 − 4.9434/Re,

Rec = 414.41K3 − 16.516K2 − 2.4113K + 46.511,

Re0c = 46.511,

S0c = 0.124,

A = 14.032K3 − 4.8429K2 + 0.72144K + 1.0.

To view the effectiveness of the proposed formula in predicting the Strouhal profiles,
the bluff ring Strouhal numbers from figure 2 have been corrected to curvature K =0.
As can be seen in figure 10, they collapse close to one curve, belonging to the straight
circular cylinder Strouhal profile. The maximum deviation of any one point from its
predicted value is approximately 5%, but generally the deviation is much less than
2%. The fit provided by Leweke & Provansal (1995) is accurate to within 1% for
rings with aspect ratios Ar � 10; however, for aspect ratios in the range 3 � Ar < 10
the discrepancy can be as high as 15%. Over this aspect ratio range, the relationship
derived by Leweke & Provansal (1995) typically predicts Strouhal frequencies with



Spheres to circular cylinders 165

a discrepancy an order of magnitude greater than the current expression. Note,
however, that the linear stability analysis comprising the next section predicts that
the wakes of rings with aspect ratios Ar < 4 undergo an asymmetric transition prior
to the Hopf transition. The present formula still exceeds the accuracy of the Leweke
& Provansal (1995) relationship, that exhibits errors of approximately 10% for the
Strouhal number profile for an aspect ratio Ar =4.

4. Results: linear asymmetric wake stability
4.1. Determining asymmetric stability using Floquet analysis

A detailed study of the stability of the bluff ring system to asymmetric perturbations
using the Floquet analysis technique was performed.

Following the validation of the stability analysis code against the sphere and
cylinder geometries discussed previously, the dominant shedding modes for the larger
aspect ratio rings were determined, and also the critical transition Reynolds numbers
for asymmetric flow of both the periodic and steady base flows observed for larger
and smaller aspect ratio rings, respectively.

The spanwise wavelengths and critical Reynolds numbers of the mode A and
mode B transitions for the circular cylinder (Barkley & Henderson 1996) were used
as a guide for the present stability analysis. Floquet multipliers were calculated at
Reynolds numbers in the vicinity of the critical transitions of the dominant modes.
Cubic and quadratic interpolations were used to more accurately estimate the critical
Reynolds numbers and spanwise wavelengths of the transitions. Note that critical
Reynolds numbers found for secondary transitions should be treated with caution
as once the flow has undergone a lower-Reynolds-number asymmetric transition,
the axisymmetric base flow used for the analysis is no longer applicable. Barkley &
Henderson (1996) offer a description of the limitations of linear stability theory.

The first-occurring asymmetric vortex-shedding mode in the cylinder wake with in-
creasing Reynolds number predicted by the stability analysis of Barkley & Henderson
(1996) was mode A. At a higher Reynolds number, another mode was predicted,
mode B. The topological predictions of the mode B transition from the stability
analysis compared favourably with experimental flow visualizations of the saturated
mode (Williamson 1988b, 1996) in terms of both the spanwise wavelength of the
asymmetric structures, and their spatio-temporal symmetry. Despite the accurate pre-
dictions relating to the structure of this second instability, experimental observations
(Williamson 1988b) showed evidence of mode B structures in the wake at Reynolds
numbers as low as Re = 230, 11% below the predicted transition Reynolds number
from the stability analysis (presumably due to the change in the base flow).

A discrepancy between the prediction of the secondary asymmetric transition for
the sphere and numerical simulations of the asymmetric wake can also be shown.
Stability analysis performed by Natarajan & Acrivos (1993) highlights a second mode
following the initial steady asymmetric transition in the wake of the sphere. This
transition is from a steady asymmetric flow to an unsteady asymmetric flow, and
was predicted to occur at ReS3 = 277.5. Numerical simulations of the sphere wake in
the present study find unsteady flow for Reynolds numbers ReS3 > 272. The topology
of the transition is in agreement with the stability analysis; however, the critical
Reynolds number for the transition is 2% lower in simulations of the real wake than
the predicted value from the stability analysis. It is inferred that the topology of
secondary modes in the wake of the bluff ring will be predicted accurately by the
stability analysis; however, only qualitative estimates of the critical Reynolds numbers
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Figure 11. Critical Reynolds numbers for the transitions to the asymmetric vortex-shedding
modes for large-aspect-ratio bluff rings. �, mode A transition; �, mode B; �, mode C.

relating to secondary transitions can be made, generally accurate to within 15% of
the actual values as determined by direct simulations.

Modes of asymmetric shedding in the unsteady flow fields associated with rings of
aspect ratio Ar � 5 are presented in the next section. Later, smaller aspect ratios will
be considered, where the dominant Floquet modes occurred for a steady base flow.

4.2. Asymmetric shedding modes for Ar � 5

Results for the stability of the periodic wakes of larger bluff rings will be presented
first. Profiles of the critical transition Reynolds numbers for the asymmetric shedding
modes of bluff rings as a function of aspect ratio are shown in figure 11. Figure 11
illustrates that asymmetric instabilities in these wakes occur close to the critical
Reynolds numbers for both mode A and mode B instabilities for the straight cylinder.
Note the presence of the third mode, referred to as mode C in this investigation. At
aspect ratios Ar � 20, mode C becomes unstable at a higher Reynolds number than
either mode A or mode B. The critical Reynolds number for the mode C transition
decreases with decreasing aspect ratio, such that mode C becomes the first appearing
mode for rings with Ar = 5.

For rings with an aspect ratio large enough to observe axisymmetric periodic
vortex shedding (Ar � 4), the spanwise wavelengths at which the mode A and mode
B transitions are most unstable corresponds closely with the respective wavelengths
for the shedding modes of the circular cylinder wake. Figure 12, showing the Floquet
multiplier as a function of spanwise wavelength for each mode at Reynolds numbers
close to the transitions for the Ar = 10 ring, illustrates the similarity of the mode
wavelengths of the bluff ring and circular cylinder wakes. The narrowband mode C
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instability, located between the familiar mode A and mode B instabilities displayed
in figure 12, has not been reported previously for unrestricted flow around a straight
circular cylinder. Zhang et al. (1995) did, however, observe an asymmetric mode of a
similar spanwise wavelength in the wake of a cylinder with a tripwire in the vicinity
of the cylinder body. Robichaux et al. (1999) found a mode of a similar wavelength
for the flow around a square cross-section cylinder which they denoted mode S. As
discussed earlier, the mode C instability becomes more prominent as the aspect ratio
is decreased, with the critical Reynolds number for the transition decreasing, and the
bandwidth of the mode increasing, with decreasing aspect ratio.

Mode C has a spanwise wavelength between those of mode A and mode B, approxi-
mately 1.7d . The mode C wavelength quoted by Zhang et al. (1995) was 2d . Their
value is 17% greater than the present result; however, their wavelengths for mode A
and mode B were similarly overstated, by 10% to 20%. The square cylinder wavelength
quoted by Robichaux et al. (1999) was around 50% greater than the value reported
here. The side length of the square cross-section was employed as the length scale for
their study. This amplified the wavelength of each mode by a factor of approximately√

2, as the vortex rollers in the wake of the square cylinder appeared to scale with
the diagonal length of the square cross-section. Rescaling by this factor brings the
spanwise wavelength of their mode S to within 10% of mode C in the present study.
The time symmetry characteristics and topology of the mode C instability in the
present study match the mode S instability of the square cylinder wake exactly. These
characteristics will be discussed in the following sections.
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4.3. The mode A instability

Numerical stability analysis of the straight cylinder by Barkley & Henderson (1996)
predicts the spanwise wavelength of the mode A instability to be 3.96d . The present
study is in close agreement, as discussed previously. The fastest growing spanwise
wavelength of the corresponding mode A instability for rings of aspect ratio Ar = 20,
40, 100 and 1000 is within 1.1% of the straight cylinder wavelength; however,
as the aspect ratio decreases to Ar = 5, the wavelength increases to 4.5d , 14.5%
greater than that for the cylinder. Each of these rings became critically stable in
the Reynolds-number range 188 � Re � 194. The critical Reynolds number for rings
with aspect ratio Ar � 20 is within 1.0% of the straight cylinder transition. The
transition Reynolds number increases with decreasing aspect ratio until at Ar =5 it
occurs at a Reynolds number 3% higher than the transition for the straight cylinder.
Visualizations of the streamwise vorticity of the perturbation fields of the dominant
Floquet modes for these wakes (figure 13a for Ar = 5 and figure 14a for Ar = 20)
reveal identical time-symmetry, and show a similar distribution of vorticity to those
presented by Barkley & Henderson (1996) for the straight circular cylinder and
Robichaux et al. (1999) for the square cylinder.

The wake of the Ar = 5 ring lacks the uniformity downstream that is observed
in the circular cylinder wake, and the Ar = 20 ring wake, owing to the higher ring
curvature casting the vortex cores radially outward as they convect downstream. It is
still possible to compare the consistent sign of vorticity from one period to the next,
and also the simple opposing sign vortical distribution for each pair of vortex street
rollers, linking the perturbation field for the Ar = 5 ring with the mode A instability.

The perturbed wake maintained the same single-period (1T ) symmetry as the mode
A wake, and much of the perturbation streamwise vorticity is present within the
vortex cores of the base flow vortex street. In each case, the vorticity is concentrated
in vortex cores close to the cross-section, but dissipates 8d to 10d downstream.

4.4. The mode B instability

As with the mode A instability, a shorter-wavelength mode B instability was also
predicted for all rings with aspect ratio Ar � 5. The critical Reynolds number for
this instability is predicted at Reynolds numbers as high as Re = 301 for the ring
with Ar = 5. The critical Reynolds number decreases to within 1.1% of the straight
circular cylinder transition Reynolds number Re = 258 for rings with aspect ratio
Ar � 20. The spanwise wavelength of the mode B instability lies within 2.5% of the
straight circular cylinder wavelength for all rings with aspect ratios Ar � 5.

The Strouhal–Reynolds-number profiles for bluff rings found in experiment by
Leweke & Provansal (1995) are not discontinuous through the mode B transition as
observed for the straight circular cylinder wake (Williamson 1988b, 1996). Despite
this, Leweke & Provansal (1995) do observe a change in gradient of the profiles in
the Reynolds number range 255 < Re < 310 consistent with the mode B transition
regime highlighted in the present study. This gradient change suggests a gradual flow
transition occurring in this Reynolds-number range, consistent with the nonlinear
interaction of the saturated asymmetric wake following the mode A transition with
the mode B instability.

It is proposed that the imposed periodicity of the ring geometry on the asymmetric
wake structures imposes a gradual energy shift from Mode A wake structures to those
corresponding to the Mode B wake. Thus, the transition to mode B is via a gradual
impingement on the mode A structures globally, rather than the switching between
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(a)

(b)

(c)

Figure 13. Streamwise vorticity of the perturbation field for the dominant azimuthal mode
associated with the mode A, mode B and mode C transitions, with azimuthal wavelengths
3.93d , 0.785d and 1.57d , respectively, for a ring with aspect ratio Ar = 5. These transitions are
shown in contour plots (a), (b) and (c), and are computed at Reynolds numbers of Re = 200,
Re = 305 and Re =175, respectively. Vorticity contours levels are arbitrarily chosen to elucidate
the structure of the perturbation fields. Dark contours are negative, light contours are positive.
Flow is from left to right, and the symmetry axis of the ring is located at the bottom of each
frame.
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(a)

(b)

(c)

Figure 14. Streamwise vorticity of the perturbation field for the dominant azimuthal mode
for each of the mode A, mode B and mode C transitions, with azimuthal wavelengths 3.93d ,
0.785d and 1.65d , respectively, for a ring with aspect ratio Ar = 20. These transitions are
shown in contour plots (a), (b) and (c), and are computed at Reynolds numbers of Re =200,
Re = 265 and Re = 325, respectively. Vorticity contours are arbitrarily chosen to elucidate the
structure of the perturbation fields.
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asymmetric modes or the local formation of different modes along the span seen for
the straight circular cylinder (Williamson 1996; Henderson 1997).

The symmetry of the mode B instability is again of the 1T type, consistent with
the previous studies of Robichaux et al. (1999), and Barkley & Henderson (1996).
Figures 13(b) and 14(b) show plots of the streamwise vorticity of the mode B instability
for rings with aspect ratios Ar = 5 and Ar = 20, respectively. Small portions of the plot
in figures 13(b) and 14(b) appear slightly underresolved, owing to the interpolation of
the computed vorticity over the mesh during post-processing. Despite the relatively
high Reynolds number for the computation, and the higher spatial resolution required
to resolve the perturbation field, the overall structure of the vorticity field is well
defined, indicating good convergence.

4.5. The mode C instability

The intermediate-wavelength mode C instability has a maximum growth rate for
spanwise wavelengths between 1.6d and 1.7d . Figure 11 shows that this transition
occurs at higher Reynolds numbers as the ring aspect ratio increases. For smaller
aspect ratio rings, it in fact becomes the dominant transition mode. At Ar = 5, the
mode C transition is the primary asymmetric vortex shedding mode; at Ar = 10, it
is the secondary mode; and for rings with Ar � 20, it is the third mode to become
unstable.

Streamwise vorticity plots of the perturbation field of the mode C instability are
presented in figures 13(c) and 14(c) for aspect ratios Ar =5 and Ar = 20, respectively.
Note that the mode is characterized by a two-period (2T ) symmetry, with the sign of
the perturbation field vorticity alternating between each successive period of the base
flow. The 2T temporal symmetry observed here is consistent with the square cylinder
mode S observed by Robichaux et al. (1999), and may be observed as the reversal in
sign of the vorticity distributed around each successive vortex core.

The decrease in aspect ratio also decreases the local symmetry between the fluid
passing in and around the ring cross-section, and the resulting vortex shedding. It
is this disruption of symmetry that appears to allow the mode C mode to become
unstable, just as Zhang et al. (1995) found by causing a local disruption by inserting
a tripwire close to the cylinder. In the absence of such a disruption, no mode at this
spanwise wavelength is observed either through numerical stability analysis (Barkley
& Henderson 1996; Noack & Eckelmann 1994b) or through experimental studies
(Williamson 1988b).

As mentioned earlier, mode C has been observed in the wake of other geometries,
such as the square cylinder (Robichaux et al. 1999). With regard to the stability of
bluff-body wakes, the circular cylinder may be a special case, suppressing the mode
C transition. The present study found no evidence of a mode C transition in the
circular cylinder wake. Subcritical Floquet multipliers were observed corresponding
to the projected wavelength of mode C; however, for increasing Reynolds number
the multipliers remained absolutely stable (µ � 1).

4.6. The primary asymmetric transition of steady base flows
for rings with 0 � Ar < 4

As shown, rings with Ar � 4 undergo a Hopf transition to unsteady flow prior to
an asymmetric wake transition. Previous studies (Sheard et al. 2001) show that small
rings (Ar � 3) undergo a transition to steady asymmetric flow prior to an unsteady
flow transition. Further investigation revealed that this transition occurs at an aspect
ratio of approximately Ar = 3.9.
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Figure 15. Asymmetric transition profile for small-aspect-ratio rings. The aspect ratio at
which the axial hole appears is marked by the vertical dashed line. Solid lines represent the
primary asymmetric transition modes, with triangles representing mode I, mode II represented
by diamonds, and squares representing mode III. The dashed line approximates the secondary
asymmetric Hopf transition profile, with points from asymmetric computations also indicated
by diamonds.

The asymmetric transition profiles in figure 15 indicate the presence of three distinct
transition modes over the aspect-ratio range 0 � Ar < 4. These modes are here in after
referred to as mode I, mode II and mode III. The perturbation field corresponding
to the mode I instability over the aspect ratio range 0 � Ar � 1.5 is analogous to
the regular asymmetric transition mode of the sphere wake. For aspect ratios over
the range 1.6 � Ar � 1.7, an asymmetric Hopf transition mode dominates (mode II),
and for the aspect-ratio range 1.8 � Ar < 4, a regular asymmetric transition in the
recirculating wake behind the ring cross-section (mode III) dominates.

Throughout the mode I aspect-ratio range, a rapid decrease in transition Reynolds
number is experienced with increasing aspect ratio. The minimum critical Reynolds
number reached is Re = 72.6 at Ar =1.4. The steady decrease from Re = 212 at Ar = 0
(a sphere) indicates that the ring cross-section diameter, d , is not an appropriate length
scale for rings of small aspect ratio, and a length scale based on the outer diameter
of the ring (D + d) would be more appropriate. Applying this length scale to the
Ar =1.4 ring, for example, would give a transition Reynolds number of ReD+d = 174.
This corresponds to a decrease of just 17.6% from the sphere transition Reynolds
number at Ar = 0.

The azimuthal mode number of the mode III transition at Ar = 2 and Ar = 3
are m = 1 and m =2, respectively. These transitions are classified on the one mode
III transition branch, as the corresponding axisymmetric base flow scales on the ring
cross-section, rather than the outer ring diameter (as per the mode I transition). Hence,
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Aspect ratio range Primary instability m Secondary instability m

0 � Ar � 2 m = 1 m = 1
3 � Ar � 3.5 m = 2 m = 2

Table 3. Predicted azimuthal mode number of transition modes in the wake of rings with
Ar < 4.
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Figure 16. Pairs of (i) streamline plots and (ii) perturbation field streamwise vorticity contours
at the asymmetric transition for rings with aspect ratio Ar < 4. The mode I transition is shown
without the axial hole in (a), with aspect ratio Ar = 0.6 at Re = 114. The mode I transition
with the axial hole is shown in (b), with Ar = 1.2 at Re = 78. The mode II transition is shown
in (c), with Ar = 1.6 at Re = 93, and the mode III transition is shown in (d) with Ar =2 at
Re = 90. The axis is represented by a black line, and contour levels are chosen to highlight the
flow structures (refer to figure 4).

the azimuthal wavelength of the mode III instability also scales with the cross-section
diameter d , and the azimuthal mode number increases with aspect ratio to maintain
the azimuthal wavelength. The important consideration is that the perturbation field
of the dominant Floquet mode remains consistent over the mode III regime.

The dominant spanwise mode numbers at various aspect ratios are summarized
in table 3. Both the primary asymmetric instability and the secondary instability are
included.

Distinctions between the three transition modes become obvious when the
perturbation fields of the transitions are analysed. Figure 16 shows both streamline
plots of the axisymmetric base flows, and corresponding streamwise vorticity plots of
the perturbation fields of each of the dominant Floquet modes in question.

4.6.1. The mode I transition: 0 � Ar � 1.5

The variation of the critical Reynolds number for the mode I transition in
figure 15 is continuous through Ar = 1. Thus, the emergence of the axial hole has no
immediate effect on the transition, as the similarity in perturbation field distributions
in figures 16(a) and 16(b) demonstrate. This continuity is a product of the similarity
in structure of the large recirculating eddies in the near wakes of both small rings
with a hole at the axis (figure 16b) and without a hole (figure 16a). For the sphere, the
recirculation bubble becomes unstable to asymmetric perturbations, shifting radially
from the axisymmetric state to form the classic double-threaded wake.
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4.6.2. The mode II transition: 1.6 � Ar � 1.7

The effect of the axial hole becomes apparent at aspect ratios Ar � 1.6, when the
size of the hole is of the order of the cross-section of the ring. The corresponding
transition mode is mode II mentioned previously, and visualized in figure 16(c). The
base flow field is steady at this transition, and the perturbation field is also steady
to about 1d downstream of the ring cross-section. Further downstream, a gentle
oscillation of the perturbation field was observed, in the form of vorticity being shed
from the tail of the wake. This oscillation had a Strouhal frequency St =0.00705 at
the critical Reynolds number for the transition.

The streamline plot of the base flow for mode II in figure 16(c) shows that the
fluid passing through the hole travels a complex path downstream along the axis,
recirculating back to the rear of the ring before being deflected around the axial
recirculation bubble that resides 1 − 2d downstream. Thus, for this transition, the
wake is too distended to permit the sphere transition mode to dominate, but there
is also insufficient fluid passing through the axial hole of the torus to form the
recirculating wake behind the ring cross-section necessary for mode III to dominate.

4.6.3. The mode III transition: 1.8 � Ar < 4

The mode III transition arises when the recirculating vortex ring from the rear of
the torus becomes unstable (see figure 16d).

4.7. The asymmetric Hopf transitions for rings with 0 � Ar < 4

Thus far, the predicted primary asymmetric transition of the wake of bluff rings in
the small-aspect-ratio range 0 � Ar < 4 has been described (i.e. modes I, II and III).
These wakes following the regular mode I and mode III transitions also experience
a secondary asymmetric transition, leading to an unsteady wake. These primary and
secondary transitions are similar to the primary and secondary transitions observed in
the wake of a sphere (Johnson & Patel 1999). The sphere wake undergoes a primary
regular asymmetric transition at Re = 211 followed by a secondary asymmetric Hopf
transition at Re ≈ 270.

4.7.1. Secondary transitions in the mode I and mode III regimes

The secondary transition following the mode I and mode III transitions is akin
to the secondary transition of the sphere wake predicted by Natarajan & Acrivos
(1993). They found similar transitions in the wakes of both spheres and disks:
in both instances the perturbation fields of these secondary transition modes were
characterized by the shedding of slanted alternating bands of positive and negative
streamwise vorticity downstream from the rear of the bluff body.

A full linear stability analysis of the secondary transition in parameter space is
yet to be performed. Critical-Reynolds-number profiles of the secondary transition
are treated in a later section, as they could only be verified by means of asymmetric
computations. This was due to a limitation of the stability analysis technique, whereby
only the leading Floquet mode (i.e. the regular transition mode) could be resolved.
As no regular asymmetric transition modes become unstable over the mode II
range (1.6 <Ar < 1.7), the present Floquet stability analysis is applied to provide
accurate predictions of the mode II Hopf transition Reynolds numbers and symmetry
characteristics.

4.7.2. Mode II: a spontaneous asymmetric Hopf transition

In order to understand the nature of the mode II transition, a study of the stability
of the Ar = 1.6 ring to this transition mode is presented. The axisymmetric base flow
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Figure 17. Leading asymmetric Floquet instability modes for the Ar = 1.6 ring with increasing
Reynolds number. The absolutely stable real mode is represented by diamonds, and the
imaginary Floquet mode (unstable for Re � 94) is represented by squares. The neutral stability
limit (µ= 1) is indicated by the dashed line.

is absolutely stable to the primary Floquet mode (a real mode corresponding to a
regular asymmetric transition of the wake). The highest Floquet multiplier for this
mode is µ ≈ 0.92, for Re ≈ 70, always below the neutral stability limit (i.e. µ < 1).

A complex conjugate pair of Floquet multipliers (corresponding to an asymmetric
Hopf transition) is the first Floquet mode to become unstable (i.e. µ > 1). This mode
is unstable for Re � 94, and is characterized by a periodic perturbation field. Profiles
of the stability parameter space, showing these dominant Floquet modes, are provided
in figure 17. A spontaneous Hopf transition from a steady axisymmetric wake flow to
an unsteady asymmetric wake flow is therefore predicted for the mode II transition.

As discussed, aspect ratios Ar � 4 undergo an axisymmetric Hopf bifurcation
prior to an asymmetric transition with increasing Reynolds number. In this case,
the dominant azimuthal mode numbers elucidate the spanwise wavelength of the
asymmetric vortex-shedding modes in terms of the ring cross-section diameter, d .
Asymmetric computations presented in the next section are performed to capture
the Hopf bifurcation of the steady asymmetric wakes in the mode I and mode III
aspect ratio regime 0 � Ar � 1.5 and 1.8 � Ar < 4, respectively. Iso-surface plots are
presented, verifying the predicted regular mode I transition and the mode A transition.

5. Results: asymmetric wake computations
This section details the determination of the profile of the critical Reynolds

number of the asymmetric Hopf transition in the wake of bluff rings with aspect
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ratios Ar < 4.0. Plots are also provided from asymmetric simulations validating the
predictions of Floquet stability analysis.

5.1. Capturing the unsteady transition in steady asymmetric wakes

The critical Reynolds numbers for the unsteady asymmetric transition of bluff ring
wakes with aspect ratios 0 � Ar < 4 were approximated by interpolating the growth
rates of unsteady transients in the wake around the Hopf transition Reynolds number
for a zero growth rate. Hence, the transition Reynolds numbers are captured in a
manner similar to the technique used to determine the critical Reynolds numbers for
the axisymmetric Hopf transition for bluff rings with aspect ratio Ar � 4. The critical-
Reynolds-number profile of the Hopf transition for small aspect ratios is shown
in figure 15. Note the similarity between the measured Hopf transition at Ar = 0
of ReS3 = 272.2, and the accepted value for the secondary sphere wake transition
ReS3 ≈ 272.5.

The Hopf transition profile follows a trend similar to the regular asymmetric
transition profile. Two points that have been made previously can be observed
from the graph. One is the absence of a regular transition over the aspect ratio
range 1.6 � Ar � 1.7, as the mode II transition is a Hopf transition. The second is
the intersection between the two transition profiles just prior to Ar = 4.0. This is the
critical aspect ratio above which the wake flow fields exhibit unsteady behaviour prior
to an asymmetric transition. Thus, the asymmetric transition for Ar � 4 corresponds
to an asymmetric vortex shedding mode.

5.2. Asymmetric visualization of the predicted transition modes

Although the full simulation of the various asymmetric transition modes presented in
this paper is the subject of further work, we present here two examples of asymmetric
wakes that agree with the predictions of the Floquet stability analysis. The wake of the
Ar =0.6 ring at Re = 130 is shown in figure 18. The mode I transition wake is observed,
with asymmetric wake structures consistent with the wake behind the sphere (another
mode I transition) following the regular asymmetric transition (Tomboulides & Orszag
2000; Thompson et al. 2001a). The double-threaded wake can be seen extending far
downstream of the body. The predicted m =1 azimuthal symmetry and the plane
of symmetry along the axis are clearly evident, again consistent with the mode I
sphere wake (Johnson & Patel 1999). The perturbation field presented in figure 16(a)
illustrates the consistency between the perturbation field of the mode I transition,
and the corresponding perturbation field of a sphere wake from the stability analysis
of Natarajan & Acrivos (1993). Furthermore, the consistency of the iso-surface plot
in figure 18 with the vortical structure of the asymmetric sphere wake following
the regular asymmetric transition (Thompson et al. 2001a) show that the Floquet
analysis applied in the present study correctly predicted the azimuthal symmetry and
Reynolds-number range of the mode I transition.

The wake of the Ar =40 ring at Re = 200 is shown in figure 19 to highlight the
development of a mode A vortex-shedding wake, similar to that predicted behind the
circular cylinder (Thompson et al. 1994, 1996). The azimuthal span is approximately
3.9d , consistent with the mode A wake for the circular cylinder (Barkley & Henderson
1996). The spatio-temporal symmetry of the wake asymmetry, and the vorticity
distribution observed here is also consistent with previous circular cylinder stability
studies (Barkley & Henderson 1996), and experimental flow visualization (Williamson
1996).
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Figure 18. The asymmetric wake of the Ar = 0.6 ring following the mode I transition at
Re = 130. The ring is located at the top right-hand corner of the frame, and the flow direction
is from the top right to the bottom left. Light and dark isosurfaces show negative and positive
streamwise vorticity, respectively. Note the double-threaded wake structure, similar to the
classic sphere wake.

Figure 19. The asymmetric wake of the Ar = 40 ring following the mode A transition at
Re = 200. Isosurfaces are shaded as in figure 18; however, a translucent isosurface is added,
showing a pressure level of −0.01 units, to elucidate the vortex street. Note the counter-rotating
streamwise vortex pairs in the braid region between the vortex cores. These structures are
consistent with the mode A wake structures observed in the wake of the circular cylinder. The
simulated azimuthal span is approximately 3.9d .
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6. Conclusions

Results have been presented from both axisymmetric direct numerical simulations,
and linear Floquet stability analysis of the wakes of bluff rings. Strouhal–Reynolds-
number profiles have been presented for a wide range of aspect-ratios, as have critical
Reynolds numbers pertaining to the transitions to separated flow, unsteady flow and
asymmetry in the wake. Furthermore, asymmetric simulations have ascertained the
approximate transition to unsteady flow for those rings that exhibit steady asymmetric
flow structures prior to a transition to unsteady flow. Floquet analysis has allowed us
to make further predictions with respect to the asymmetric wake structures based on
the perturbation fields obtained, and comparison with existing work.

The single-parameter torus geometry has proved to be an excellent geometry for
the study of a plethora of wake flow transitions. The simplicity in modelling the torus
numerically makes it an attractive geometry for the study of geometric effects on
bluff-body flow.

Studying the torus has enabled us to observe why the behaviour of the wake of the
sphere is so different to the wake of the straight circular cylinder. We have identified
which wake features and flow structures correspond to the various transitions that
are predicted. The full parameter space of both axisymmetric and asymmetric flow-
transition Reynolds numbers has been mapped as a function of aspect ratio. This
parameter study, coupled with the presented streamline plots of the wakes for
various aspect ratios and flow transitions, provides a significant contribution to
the understanding of the effect a geometry has on both the order and types of
transition likely to occur in its wake prior to turbulent flow.

Rings with Ar < 3.9 are predicted to undergo a transition to asymmetric flow
prior to a transition to unsteady flow. Three distinct transition modes have been
identified and characterized in this aspect-ratio range. These transitions, modes I, II
and III, occur over aspect-ratio ranges Ar < 1.6, 1.6 � Ar � 1.7 and 1.7 <Ar < 3.9,
respectively. The regular bifurcation to asymmetry in the wake of the sphere is an
example of a mode I transition.

Rings of intermediate aspect ratio, 3.9 � Ar � 8, are predicted to undergo a asym-
metric mode C transition of the axisymmetric vortex-shedding wake. This mode does
not occur in an unperturbed circular cylinder wake, or a sphere or disk wake. Rings
of aspect ratios Ar � 8 were shown to undergo an initial transition to asymmetric
vortex shedding analogous to the mode A shedding from the straight circular cylinder.
A summary of the asymmetric transition modes predicted for the bluff ring system is
presented in table 4.

Investigation into rings of aspect ratios 0 � Ar < 1.6 showed that they scaled with
a Reynolds number based on the overall ring diameter D + d , rather than the ring
cross-section diameter, d . This was evident from the decrease in transition Reynolds
numbers for flow separation, asymmetric flow and unsteady flow.

Asymmetric flow simulations permitted the verification of the unsteady transition
of ring wakes for 0 � Ar < 3.9. Visualization of the saturated wakes following both
the mode I transition of the wake of a ring with an aspect ratio Ar = 0.6, and the
mode A transition of a ring with aspect ratio Ar = 40 are provided. These aspect
ratios were chosen because of their similarity to the limiting sphere and circular
cylinder geometries, respectively. The computed asymmetric wake structures agree
with the predictions of the Floquet stability analysis pertaining to the symmetry of
these modes, and pave the way for a thorough study of the asymmetric bluff ring
parameter space, to be the subject of a future publication.
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Ar range Asymmetric transition mode

Primary transition Secondary transition Tertiary transition

0 � Ar < 1.6 Regular mode I Hopf mode I
m = 1 symmetry m = 1 symmetry

1.6 � Ar � 1.7 Hopf mode II
m = 1 symmetry

1.7 < Ar � 3.9 Regular mode III Hopf mode III
4.7d < λd < 7.9d 4.7d < λd < 7.9d

3.9 � Ar � 8 Mode C Mode A Mode B
λd ≈ 1.7d λd ≈ 4.0d λd ≈ 0.8d

8 � Ar � 13 Mode A Mode C Mode B
λd ≈ 4.0d λd ≈ 1.7d λd ≈ 0.8d

13 � Ar < ∞ Mode A Mode B Mode C
λd ≈ 4.0d λd ≈ 0.8d λd ≈ 1.7d

Table 4. Summary of the asymmetric transition modes for bluff ring wakes.
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Ghidersa, B. & Dušek, J. 2000 Breaking of axisymmetry and onset of unsteadiness in the wake of
a sphere. J. Fluid Mech. 423, 33–69.

Henderson, R. 1997 Nonlinear dynamics and pattern formation in turbulent wake transition.
J. Fluid Mech. 352, 65–112.

Hourigan, K., Reichl, P. & Thompson, M. 2002 Unsteady separated flow near a free surface. In
Invited Keynote Lecture, IUTAM Symposium on Unsteady Separated Flows, Toulouse, France.

Hourigan, K., Thompson, M. & Tan, B. 2001 Self-sustained oscillations in flows around long flat
plates. J. Fluids Struct. 15, 387–398.

Johnson, T. & Patel, V. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech.
378, 19–70.

Karniadakis, G. 1990 Spectral element – Fourier methods for incompressible turbulent flows.
Comput. Methods Appl. Mech. Engng 80, 367–380.

Leweke, T. & Provansal, M. 1995 The flow behind rings: bluff body wakes without end effects.
J. Fluid Mech. 288, 265–310.

Leweke, T. & Williamson, C. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech.
360, 85–119.

Magarvey, R. & Bishop, R. 1961a Transition ranges for three-dimensional wakes. Can. J. Phys.
39, 1418–1422.

Magarvey, R. & Bishop, R. 1961b Wakes in liquid–liquid systems. Phys. Fluids 4, 800–805.

Magarvey, R. & MacLatchy, C. 1965 Vortices in sphere wakes. Can. J. Phys. 43, 1649–1656.

Mills, R., Sheridan, J. & Hourigan, K. 2002 Response of base suction and vortex shedding from
rectangular prisms to transverse forcing. J. Fluid Mech. 461, 25–49.



180 G. J. Sheard, M. C. Thompson and K. Hourigan

Mills, R., Sheridan, J. & Hourigan, K. 2003 Particle image velocimetry and visualization of
natural and forced flow around rectangular cylinders. J. Fluid Mech. 478, 299–323.

Mittal, R. 1999a A Fourier–Chebyshev spectral collocation method for simulating flow past
spheres and spheroids. Intl J. Numer. Fluids 30, 921–937.

Mittal, R. 1999b Planar symmetry in the unsteady wake of a sphere. AIAA J. 37, 388–390.

Mittal, R. & Balachandar, S. 1995 Generation of streamwise vortical structures in bluff body
wakes. Phys. Rev. Lett. 75, 1300–1303.

Monson, D. 1983 The effect of transverse curvature on the drag and vortex shedding of elongated
bluff bodies at low Reynolds number. Trans. ASME I: J. Fluids Engng 105, 308–317.

Natarajan, R. & Acrivos, A. 1993 The instability of the steady flow past spheres and disks.
J. Fluid Mech. 254, 323–344.

Noack, B. & Eckelmann, H. 1994a A global stability analysis of the steady and periodic cylinder
wake. J. Fluid Mech. 270, 297–330.

Noack, B. & Eckelmann, H. 1994b A low-dimensional Galerkin method for the three-dimensional
flow around a circular cylinder. Phys. Fluids 6, 124–143.

Ormières, D. & Provansal, M. 1999 Transition to turbulence in the wake of a sphere. Phys. Rev.
Lett. 83, 80–83.

Patera, A. 1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion.
J. Comput. Phys. 54, 468–488.

Robichaux, J., Balachandar, S. & Vanka, S. 1999 Three-dimensional Floquet instability of the
wake of a square cylinder. Phys. Fluids 11, 560–578.

Roshko, A. 1953 On the development of turbulent wakes from vortex streets. NACA TN , p. 2913.

Sheard, G., Thompson, M. & Hourigan, K. 2001 A numerical study of bluff ring wake stability. In
Proc. 14th Australasian Fluid Mech. Conf. Department of Mechanical Engineering, University
of Adelaide.

Sheard, G., Thompson, M. & Hourigan, K. 2002 On axisymmetric bluff body wakes: three-
dimensional wake structures and transition criticality of the torus. In Proc. 3rd Conf. on Bluff
Body Wakes and Vortex Induced Vibrations, Port Douglas, Australia.

Thompson, M., Hourigan, K. & Sheridan, J. 1994 Three-dimensional instabilities in the wake of a
circular cylinder. In Proc. Intl Colloquium on Jets, Wakes and Shear Layers (ed. K. Hourigan).
CSIRO, Melbourne.

Thompson, M., Hourigan, K. & Sheridan, J. 1996 Three-dimensional instabilities in the wake of
a circular cylinder. Expl Therm. Fluid Sci. 12, 190–196.

Thompson, M., Leweke, T. & Provansal, M. 2001a Kinematics and dynamics of sphere wake
transition. J. Fluids Struct. 15, 575–585.

Thompson, M., Leweke, T. & Williamson, C. 2001b The physical mechanism of transition in bluff
body wakes. J. Fluids Struct. 15, 607–616.

Tomboulides, A. & Orszag, S. 2000 Numerical investigation of transitional and weak turbulent
flow past a sphere. J. Fluid Mech. 416, 45–73.

Tomboulides, A., Orszag, S. & Karniadakis, G. 1993 Direct and large-eddy simulation of the
flow past a sphere. In Proc. 2nd ICTME .

Williamson, C. 1988a Defining a universal and continuous Strouhal–Reynolds number relationship
for the laminar vortex shedding of a circular cylinder. Phys. Fluids 31, 2742–2744.

Williamson, C. 1988b The existence of two stages in the transition to three-dimensionality of a
cylinder wake. Phys. Fluids 31, 3165–3168.

Williamson, C. 1989 Oblique and parallel mode of vortex shedding in the wake of a circular
cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579–627.

Williamson, C. 1996 Three-dimensional wake transition. J. Fluid Mech. 328, 345–407.

Zhang, H., Noack, B., König, M. & Eckelmann, H. 1995 On the transition of the circular cylinder
wake. Phys. Fluids 7, 779–793.


